

Physique Générale : Mécanique 02.02: Rappels mathématiques: Dérivées

Sections SC, GC & SIE , BA1

Dr. J.-P. Hogge

Swiss Plasma Center

École polytechnique fédérale de Lausanne

Version du 10.9.2024

- Faculté
 des
 sciences
 de base
- Swiss
 Plasma
 Center

Aujourd'hui

Quelques rappels sur les dérivées:

- Dérivée d'une fonction f(x)
- Dérivée d'une somme et d'un produit de fonctions
- Dérivée d'une fonction composée (chain rule)
- Dérivée d'une fonction vectorielle
- Développement limité d'une fonction f(x) autour d'un point x=x₀
- Primitive

- Faculté
 des
 sciences
 de base
- Swiss
 Plasma
 Center

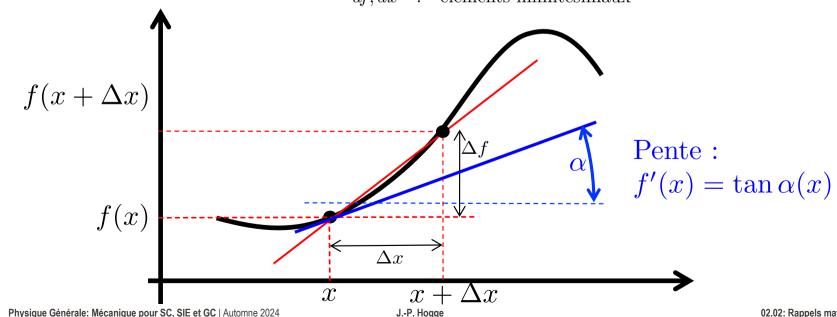
Dérivée d'une fonction f(x) par rapport à x

La dérivée f'(x) d'une fonction f par rapport à sa variable x correspond au taux de variation de f lorsque x varie, ou en d'autres termes, à la pente de f évaluée au point x

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{f(x + dx) - f(x)}{dx} = \frac{df}{dx}$$

 $\Delta f, \Delta x$: accroissements (pas forcément petits)

df, dx: éléments infinitésimaux



■ Faculté des sciences de base

Swiss Plasma Center

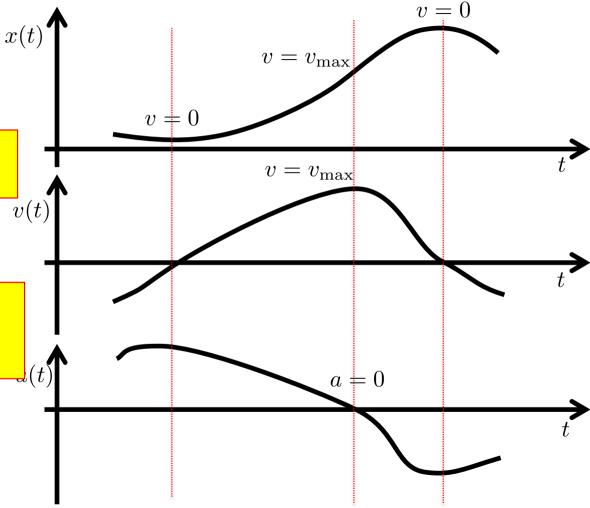
Dérivées. Position, Vitesse, Accélération (1D)

$$v(t) = \frac{dx(t)}{dt}$$

L'accélération est la dérivée de la vitesse, soit la dérivée seconde de la position

Faculté
des
sciences
de base

$$a(t) = \frac{dv(t)}{dt} = \frac{d^2x(t)}{dt^2}$$



Exemple: $f(x) = x^n$

$$f(x) = x^n \quad , \quad (x^n)' = ?$$

$$f(x + \Delta x) = (x + \Delta x)^n = x^n + nx^{n-1}\Delta x + \underbrace{\dots x^{n-2}(\Delta x)^2 + \dots x^{n-3}(\Delta x)^3 + \dots + (\Delta x)^n}_{\text{termes très petits}}$$

$$f(x + \Delta x) = (x + \Delta x)^n = x^n + nx^{n-1}\Delta x + \mathcal{O}\left((\Delta x)^2\right)$$

$$f(x + \Delta x) = (x + \Delta x)^n \simeq x^n + nx^{n-1}\Delta x$$

$$f(x + \Delta x) - f(x) = (x + \Delta x)^n - x^n \simeq nx^{n-1}\Delta x$$

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \simeq \lim_{\Delta x \to 0} \left(nx^{n-1} \frac{\Delta x}{\Delta x} \right) = nx^{n-1}$$

$$\mathcal{O}\left((\Delta x)^2\right)$$

'Terme d'ordre $(\Delta x)^2$ '

Dépend du carré de Δx , et est donc **négligeable** devant Δx si Δx est très petit

Swiss
Plasma
Center

$$(x^n)' = nx^{n-1}$$

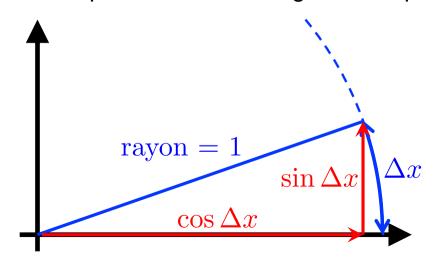
En particulier:

$$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$$

Exemple: $f(x) = \sin(x)$

$$f(x) = \sin x \quad , \quad (\sin x)' = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x}$$
$$\sin(x + \Delta x) = \sin x \cos \Delta x + \cos x \sin \Delta x$$
$$\lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \left(\sin x \frac{(\cos \Delta x - 1)}{\Delta x} + \cos x \frac{\sin \Delta x}{\Delta x} \right)$$

Par inspection du cercle trigonométrique:



$$\lim_{\Delta x \to 0} \left(\frac{(\cos \Delta x - 1)}{\Delta x} \right) = 0$$

$$\lim_{\Delta x \to 0} \left(\frac{\sin \Delta x}{\Delta x} \right) = 1$$

$$(\sin x)' = \cos x$$

Faculté
des
sciences
de base

Swiss
Plasma
Center

Dérivée d'une somme ou un produit de fonctions

$$(f(x) + g(x))' = \lim_{\Delta x \to 0} \frac{\left(f(x + \Delta x) + g(x + \Delta x)\right) - \left(f(x) + g(x)\right)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x) + g(x + \Delta x) - g(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{g(x + \Delta x) - g(x)}{\Delta x}$$

$$(f(x) + g(x))' = f'(x) + g'(x)$$

Dérivée d'une somme de fonctions

[■]Faculté
des
sciences
de base

Swiss
Plasma
Center

Dérivée d'un produit de fonctions

$$(f(x)g(x))' = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x + \Delta x) + f(x)g(x + \Delta x) - f(x)g(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x}\right) g(x + \Delta x) + f(x)\left(\frac{g(x + \Delta x) - g(x)}{\Delta x}\right)$$

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

$$(f(x) g(x))' = f'(x) g(x) + f(x) g'(x)$$

Dérivée d'un produit de fonctions

- ■Faculté
 des
 sciences
 de base
- Swiss
 Plasma
 Center

Fonction composée

Fonction composée: $(f \circ g)(x) = f(g(x))$

Exemple: $\cos(2x^2)$ \Longrightarrow $f(g) = \cos(g)$, $g(x) = 2x^2$

Composition de trois fonctions:

$$(f \circ g \circ h)(x) = f(g(h(x)))$$

$$\frac{1}{\log(4x^2 + x + 1)}$$
 \implies $f(g) = \frac{1}{g}$, $g(h) = \log(h)$, $h(x) = 4x^2 + x + 1$

- Faculté
 des
 sciences
 de base
- Swiss
 Plasma
 Center

Dérivée d'une fonction composée (chain rule)

$$(f \circ g)'(x) = f(g(x))' = \lim_{\Delta x \to 0} \frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x}$$

On utilise, si Δz très petit:

$$h'(z) = \frac{dh}{dz} = \lim_{\Delta z \to 0} \frac{h(z + \Delta z) - h(z)}{\Delta z} \implies h(z + \Delta z) \simeq h(z) + \frac{dh}{dz} \Delta z = h(z) + \Delta h \qquad \frac{h \leftrightarrow f, g}{z \leftrightarrow g, x}$$

en identifiant
$$h \leftrightarrow g, z \leftrightarrow x \qquad g(x+\Delta x) = g(x) + \frac{dg}{dx} \Delta x = g(x) + \Delta g$$

$$h \leftrightarrow f, z \leftrightarrow g \qquad f(g(x+\Delta x)) = f(g+\Delta g) = f(g) + \frac{df}{dg} \Delta g$$

$$(f \circ g)'(x) = \lim_{\Delta x \to 0} \frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(g) + \frac{df}{dg} \Delta g - f(g)}{\Delta x} = \lim_{\Delta x \to 0} \frac{df}{dg} \frac{\Delta g}{\Delta x} = \frac{df}{dg} \frac{dg}{dx}$$

$$f(g(x))' = \frac{df(g)}{dg} \frac{dg(x)}{dx} = \frac{df}{dg} \frac{dg}{dx}$$

■ Faculté

Exemple de dérivation de fonction composée

$$(f \circ g)(x) = f(g(x)) = \frac{1}{g(x)}$$

$$\frac{df}{dg} = -\frac{1}{g^2}$$
 , $\frac{dg}{dx} = g'(x)$

$$\left(\frac{1}{g(x)}\right)' = -\frac{g'(x)}{g^2(x)}$$

Applications directes:

$$\left(\frac{f(x)}{g(x)}\right)' = \left(f(x)\frac{1}{g(x)}\right)' = \frac{f'(x)}{g(x)} - f(x)\frac{g'(x)}{g^2(x)}$$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

Faculté
des
sciences
de base

Exemple de dérivation de fonction composée

$$(f \circ g)(x) = f(g(x)) = \sin(kx)$$

$$f(g) = \sin g$$
 , $\frac{df}{dg} = \cos g$, $g(x) = kx$, $\frac{dg}{dx} = k$

$$\sin(kx)' = k \, \cos(kx)$$

- ■Faculté
 des
 sciences
 de base
- Swiss
 Plasma
 Center

Quelques dérivées importantes

f(x)	f'(x)	f(x)	f'(x)	f(x)	f'(x)
x^n	nx^{n-1}	$\log_a x$	$\frac{1}{x \ln a}$	$\tan x$	$\frac{1}{\cos^2 x}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	e^x	e^x	$\cot x$	$-\frac{1}{\sin^2 x}$
$\frac{1}{x}$	$-\frac{1}{x^2}$	a^x	$a^x \ln a$	$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\frac{1}{x^m}$	$-\frac{m}{x^{m+1}}$	$\sin x$	$\cos x$	$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
$\ln x$	$\frac{1}{x}$	$\cos x$	$-\sin x$	$\arctan x$	$\frac{1}{1+x^2}$

Faculté
des
sciences
de base

Swiss
Plasma
Center

Dérivées de vecteurs

Soit \vec{u} un vecteur de composantes $(u_1(t), u_2(t), u_3(t))$ où t est un paramètre.

$$\vec{u}'(t) = \frac{d\vec{u}}{dt} = \frac{d}{dt} \begin{pmatrix} u_1(t) \\ u_2(t) \\ u_3(t) \end{pmatrix} = \begin{pmatrix} \frac{du_1(t)}{dt} \\ \frac{du_2(t)}{dt} \\ \frac{du_3(t)}{dt} \end{pmatrix}$$

On montre facilement:

$$(\vec{u} \cdot \vec{v})' = \vec{u}' \cdot \vec{v} + \vec{u} \cdot \vec{v}'$$

$$(\vec{u} \wedge \vec{v})' = \vec{u}' \wedge \vec{v} + \vec{u} \wedge \vec{v}'$$

Faculté
des
sciences
de base

Developpement limité d'une fonction f(x) autour du point $x=x_0$

Définition: Développement limité au premier ordre

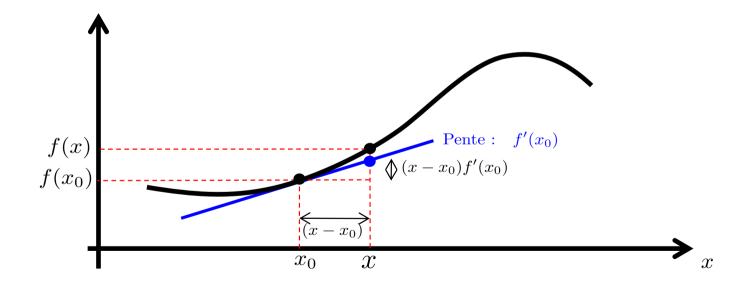
Connaissant la valeur que prend une fonction f en un point x_0 , on peut approximer la fonction f(x) pour des valeurs de x proches de x_0 par un développement limité au premier ordre:

- Faculté des sciences de base
- Swiss Plasma Center

Plus généralement:
$$f(x) \simeq \sum_{n=0}^{\infty} f^{(n)}(x_0) \frac{(x-x_0)^n}{n!}$$

Developpement limité d'une fonction f(x) autour du point $x=x_0$

$$f(x) \simeq f(x_0) + (x - x_0)f'(x_0) + \mathcal{O}((x - x_0)^2)$$



Faculté
des
sciences
de base

Swiss
Plasma
Center

Developpements limité de sin x et cos x autour de x₀=0

$$f(x) \simeq f(x_0) + (x - x_0)f'(x_0) + \mathcal{O}((x - x_0)^2)$$

x très petit
$$\begin{cases} \sin x \simeq 0 + x \cos 0 \simeq x \\ \cos x \simeq \cos 0 + x \sin 0 \simeq 1 \end{cases}$$

- ■Faculté
 des
 sciences
 de base
- Swiss
 Plasma
 Center

Primitives

Définition: Primitive

La primitive d'une fonction f(x) est (si elle existe) une fonction F(x) telle que:

$$\frac{dF(x)}{dx} = f(x)$$

La primitive d'une fonction est très utile lors d'opérations d'intégration.

- ■Faculté
 des
 sciences
 de base
- Swiss
 Plasma
 Center

Dérivée d'une fonction:

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{f(x + dx) - f(x)}{dx} = \frac{df}{dx}$$

Approximation de la fonction f(x) au voisinage du point x_0 par un développement limité d'ordre 1:

$$f(x) \simeq f(x_0) + (x - x_0)f'(x_0) + \mathcal{O}((x - x_0)^2)$$

Règles utiles:

$$(f(x) + g(x))' = f'(x) + g'(x)$$

$$(f(x) g(x))' = f'(x) g(x) + f(x) g'(x)$$

$$(f \circ g)'(x) = f(g(x))' = \frac{df}{dg} \frac{dg}{dx}$$

Résumé (2)

■ Règles utiles (suite):

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$\left(\frac{1}{g(x)}\right)' = -\frac{g'(x)}{g^2(x)}$$

Dérivées partielles:

$$\frac{\partial f(x,y)}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x,y + \Delta y) - f(x,y)}{\Delta y}$$

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x,y)}{\Delta x}$$

Primitive:

$$\frac{dF(x)}{dx} = f(x) \qquad \Longrightarrow \qquad \int_a^b f(x) \, dx = F(b) - F(a)$$

Dérivées partielles

<u>Définition:</u> Dérivée partielle

La dérivée partielle d'une fonction par rapport à l'un des ses (>1) arguments s'obtient comme dans le cas d'une fonction à une seule variable, en considérant que les autres sont constantes

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x,y)}{\Delta x}$$

$$\frac{\partial f(x,y)}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x,y + \Delta y) - f(x,y)}{\Delta y}$$

La dérivée partielle d'un fonction représente la taux de variation de la fonction par rapport à une variable lorsque l'autre est fixe.

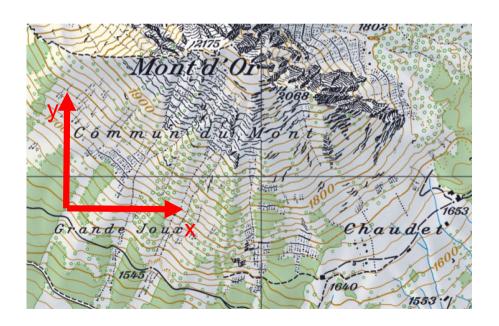
- Faculté
 des
 sciences
 de base
- Swiss
 Plasma
 Center

Dérivées partielles

Exemple: f(x,y) = altitude (longitude latitude)

$$\frac{\partial f(x,y)}{\partial x}$$
 = variation d'altitude si on se déplace à l'est

$$\frac{\partial f(x,y)}{\partial y}$$
 = variation d'altitude si on se déplace au nord



- ■Faculté
 des
 sciences
 de base
- Swiss
 Plasma
 Center